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HYBRID V-CYCLE ALGEBRAIC 
MULTILEVEL PRECONDITIONERS 

P. S. VASSILEVSKI 

ABSTRACT. We consider an algebraic derivation of multilevel preconditioners 
which are based on a sequence of finite element stiffness matrices. They cor- 
respond to a sequence of triangulations obtained by successive refinement and 
the associated finite element discretizations of second-order selfadjoint elliptic 
boundary value problems. The stiffness matrix at a given discretization level is 
partitioned into a natural hierarchical two-level two-by-two block form. Then 
it is factored into block triangular factors. The resulting Schur complement is 
then replaced (approximated) by the stiffness matrix on the preceding (coarser) 
level. This process is repeated successively for a fixed number ko > 1 of steps. 
After each ko steps, the preconditioner so derived is corrected by a certain 
polynomial approximation, a properly scaled and shifted Chebyshev matrix 
polynomial which involves the preconditioner and the stiffness matrix at the 
considered level. The hybrid V-cycle preconditioner thus derived is shown to 
be of optimal order of complexity for 2-D and 3-D problem domains. The rela- 
tive condition number of the preconditioner is bounded uniformly with respect 
to the number of levels and with respect to possible jumps of the coefficients 
of the considered elliptic bilinear form as long as they occur only across edges 
(faces in 3-D) of elements from the coarsest triangulation. In addition, an adap- 
tive implementation of our hybrid V-cycle preconditioners is proposed, and its 
practical behavior is demonstrated on a number of test problems. 

1. INTRODUCTION 

Consider a sequence of finite element stiffness matrices {A(k) }1 that is, 

A(k) = (a(/ik), 0fk)))xxEN. 

Here Nk is the set of the nodes {X}fk , of the corresponding triangulation 
Tk of the considered domain Q, assumed to be a two-dimensional polygon 
or a 3-D polytope. The set {Tk} is obtained by successive refinement. The 
basis functions {+k)} of the finite element spaces Vk are the standard nodal 
functions, that is, q(k) (Xj) = i, j, the Kronecker symbol, when x; runs over 
all the nodes of Nk . 
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The bilinear form a(., *) is defined by 

a(u, X)=Jxki,j(x) a0u dx, 
i,9 xj Oxj 

and assumed to be elliptic and bounded, that is, the coefficient matrix (kij (x)) 
is symmetric, bounded and positive definite, uniformly in x E Q. 

The matrices A(k) naturally admit the following hierarchical two-level two- 
by-two block form: 

A(k)= (Al) A A }Nk\Nkl1 
VA (k) A(k) J }Nk1 \~21 22/ 

In Vassilevski [15] the following hierarchical multilevel preconditioner M = 
MYl) was proposed, which is a more algebraically oriented version of the hier- 
archical basis multigrid method from Bank, Dupont, and Yserentant [6]: 

for k = 2 to / 

M(k) 
A 

((k) o (I A k - 

A(k) M(k-l) ) I J 21/ 

Note that here we use the standard nodal basis stiffness matrices. It was shown 
in Vassilevski [15], and earlier in Bank, Dupont, and Yserentant [6] for the 
hierarchical basis functions case, that A[A(k) 1M(k)] E [1, 1 + Ck2), where C 
is a constant independent of k (if the domain Q is two-dimensional). 

Throughout this paper, for a given square matrix B we denote by A[B] any 
eigenvalue of B. 

The purpose of this paper is to stabilize the growth of the condition number 
of A(k)-M(k), where M(k) is defined as above. Let ko > 1 be a given integer 
parameter. The idea is to use, after every group of ko steps of the above 
recursion, a polynomial acceleration in the manner proposed in Axelsson and 
Vassilevski [3]. 

More precisely, for a given integer parameter ko > 1, we define 

M(1) = A(1) 

and for k = 2 to / 

(1.1) M~k) - (A(k) 0 ) (I A- A12"I 
21/ / 

where 
)(k-1) - M(k-1) k: sko + 1, 

and 

W(k- I)-' = [I _ p, (M(k-1) 
I 
A(k- 1))]A(k-1) , k = sko + 1, 

s= 1, 2, ..., l/ko- 1. 

Here, pv = p,,(t) is a polynomial of degree v > 1 such that pv(O) = 1 and 
O < Dx,(t) < 1 . t E (O . ll. 
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We see from this definition that this new preconditioner generalizes the 
method from Vassilevski [15] (v = 1, pv = 1 - t) and that from Axelsson 
and Vassilevski [3] (k0 = 1), and can be considered as an alternative algebraic 
generalization of the classical two-level methods studied in Bank and Dupont 
[5], Braess [7, 8], Axelsson [1], Axelsson and Gustafsson [2], and Maitre and 
Musy [13]. A special variant of the present method for ko = 2 was considered 
in Vassilevski [16], which generalizes an earlier result of Kuznetsov [12]. This 
new method and the previous similar algebraic multilevel methods from Vas- 
silevski [15] and Axelsson and Vassilevski [3, 4], have much in common with 
the hierarchical basis multigrid method from Bank, Dupont, and Yserentant 
[6]. The latter is a pure V-cycle multilevel method. We show (see ?2) that 
the method from Vassilevski [15] differs from the hierarchical basis multigrid 
method in its construction, which is based on the standard nodal basis func- 
tions. In the case of exact pivots A(k) the two methods coincide up to a change 
of basis. For approximate blocks A(k) the methods differ also (slightly) in the 
blocks used for the construction of the preconditioners. Apart from the recur- 
sion involved, this is also true for the methods from Axelsson and Vassilevski [3, 
4]. We also point out that the basic difference between the algebraic multilevel 
methods from Vassilevski [15] and Axelsson and Vassilevski [3], and the hierar- 
chical basis multigrid method is that the former algebraic methods are defined 
by recursion and the main mathematical tool used there is the strengthened 
Cauchy inequality (for the latter inequality, see Bank and Dupont [5], Braess 
[7, 8], Axelsson and Gustafsson [3], Axelsson [1], and Maitre and Musy [13]). 
The present method uses as a main mathematical tool a fundamental estimate 
for the growth of the energy norm of the nodal interpolation operator which 
restricts a function from a finer finite element space to a coarser one. In contrast 
to the papers of Yserentant [18] and Bank, Dupont, and Yserentant [6], where 
only the two-dimensional case was handled successfully on the basis of the same 
estimate, in the present paper we demonstrate extension of these results for both 
two- and three-dimensional problem domains using the polynomial correction 
technique proposed in Axelsson and Vassilevski [3]. 

The main results of this paper are the following. The proposed hybrid V- 
cycle algebraic multilevel preconditioner is of optimal order if v, the degree of 
the polynomial Pv , satisfies certain inequalities determined only by 4k. These 
inequalities can always be insured by a proper choice of ko (in general, for suf- 
ficiently large k0). The polynomials Pv can be constructed in several ways, but 
the best approximation corresponds to a choice based on properly scaled and 
shifted Chebyshev polynomials. We study also the case when the pivot blocks 
A(k) in (1.1) are approximated. In this case the definition (1.1) is modified 
accordingly. (The off-diagonal blocks A~k) and A(k) are to be modified in a 
certain way.) The second result is that the method under consideration can be 
formulated as an adaptive procedure in order to construct the polynomials p, 
after each group of ko recursion steps in ( 1.1). This procedure includes estima- 
tion of the minimal eigenvalue of M(s?)' A(sko), which in this case can be done 
with an arithmetic work proportional to the number of the unknowns. Then 
the polynomial pg, = p(s) is constructed according to this spectral information. 
For the actual implementation of the method, the polynomials used can vary 
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from a group of ko recursion steps to the next, that is, we can let Pv = 
s=I,2,...,1/ko-l. 

The remainder of the paper is organized as follows. The basic definitions of 
the multilevel preconditioners constructed for the standard nodal basis func- 
tions, the two-level hierarchical basis functions, and for the kth-level hierarchi- 
cal basis functions are given in ?2. We outline also the relationship of this and 
previous algebraic multilevel methods from Vassilevski [15], and Axelsson and 
Vassilevski [3] with the hierarchical basis multigrid method from Bank, Dupont, 
and Yserentant [6]. The necessary preliminary analysis is presented in ?3. The 
relative condition number of M(k) with respect to A(k) is estimated in ?4 in 
the general case of approximate pivots A(kl) . The complexity of the method is 
studied in ?5. The adaptive procedure for the construction of the polynomials 
p, is presented in ?6. Finally, some numerical results are given in ?7. 

This paper is an enlarged version of the short communication Vassilevski 
[17]. 

2. BASIC DEFINITIONS FOR ALGEBRAIC MULTILEVEL PRECONDITIONERS 

Consider the finite element spaces 

V1 CV2 C .. CV1, 

and let {14k)}xieNk be the corresponding nodal basis functions of Vk, k = 
1, 2, ...,1. This means that 

Oxk)(Xj) = 6i'j={ i _ 09i=19 

when xj runs over all the nodes of Nk at the kth discretization level. 
As Vk-1 c Vk, we may alternatively use in Vk the so-called two-level hi- 

erarchical basis functions (cf. Bank and Dupont [5], Axelsson and Gustafsson 
[2], Maitre and Musy [13], Yserentant [18], etc.), 

{ook) x, eNk\Nkl ~k1 
{Xi)XXi E k\k_11 U {fi , Xi E Nk-11. 

Then, any function v E Vk can be expanded in either of these two bases, that 
is, we have 

V(X) = E viqs7 ) (Vi = V(Xi)) 

xENk 

- Z Vik-l) + >)j 
XENkI X1ENk\Nk-i 

This expression defines a mapping J (= Jk), which transforms the coefficient 
vector 

A = p1), I = (Vi)xlENk\Nklj V2 = (Vi)XENk-l, 

of the representation of any function v e Vk with respect to the two-level 
hierarchical basis to the coefficient vector v = (vi) of the representation of v 
in terms of the nodal basis of Vk. In matrix notation, J has the following 
block form: 

(2.1) (I JI )}Nk\Nk-I 
k\ I) }Nkl 
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We assume here that the nodes from Nk\Nk-l are ordered first, and then the 
nodes from Nk-l. 

We can also compute the stiffness matrices Ai(k) for the two-level hierarchical 
basis functions. Let A (k) be partitioned in the same manner as A (k) into the 
hierarchical two-by-two block-form, {A (k)} s12 Based on the identity 

-(k) = JTA(k)J 

a straightforward computation (see Vassilevski [1 5]) shows the following rela- 
tions between the blocks of A1(k) and A(k) and their corresponding two-level 
Schur complements. 

Proposition 1 (Vassilevski [15]). We have 

j(k)- A Aok =(kl) 

Aj(k) - A(k) + JTA(k) A~ik) -A(k)+A(k)X 
21 - 21 1211 X 12 - 12 

A22- A(k-1) 

ak -A (2k)-~)Al) A A 

Sk= j) A - k)-A~k) (A(k1)) l A(k). = S~~2) A 1k) 12 

In order to define the preconditioner in the case of approximate pivots A(k) 
we assume that for some symmetric positive definite matrices B(k) , k = 2, 
3, ..., 1, the following inequalities are valid: 

(2.2) vTA(k)vI < vTB (kvi < (1 + b)vTA (kvi for all vI, 

for a positive constant b > 0 independent of k = 2, 3, . 1. , 1. Let p, = pv (t) 
be a given polynomial of degree v > 1 such that 

p'(O) = 1, O < p,,(t) < 1, t E (O.5 1]. 

Definition 1 (Hybrid V-cycle multilevel preconditioners with approximate 
blocks). Given an integer parameter ko > 1, the multilevel preconditioner 
M = MMl) is defined as follows: 

(1) MM1 = A('); 
(2) for k = 2, ...,1, 

(k B ( (k) 0 I B (k)-Alk)\ M~k - 11 11 12, 
-Ak) )W(k-1) ) I / 
'21 

where 
)M(k-1) = M(k-1) k -1 sk, 

~(k-l)-- = [I _ p(M(k-1)1A(k-1))]A(k-) , k- 1 = sko, 
s=1,2,...,1/ko-1. 

The blocks A2 and A2k are defined as follows: 

A(k) = A(k) + (A(k) B(k1) 

21) - A21 + J7T (A() -B(1)) X 
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where J12 is the off-diagonal block of the transformation matrix J, (2.1). 

Alternatively, we can construct the multilevel preconditioner for the two-level 
hierarchical basis matrices. We simply set 

Mi_ (k) = jTM(k)j1 

to be the multilevel preconditioners for the two-level hierarchical basis stiffness 
matrices A(k). Based on the relations from Proposition 1, we have 

( 0 I) (XB(k) o i B) ( k)A g2 )(I Jl2)~ 
B(k) i kA k)\ -k 

---(k) I1 Bi 11 12). IJ1 

(k) M - ) kO I ) 
A21 

/ 

More generally, we may define the multilevel preconditioners for the kth-level 
hierarchical basis stiffness matrices i(k) . The latter basis is defined as follows 
(cf. Yserentant [18] or Bank, Dupont, and Yserentant [6]): 

~~(k) 
-1)_{ik, 

iE 

."E 

{+ Xek -{i}l~\ksU {+ XEk_, 

{k 
)}xCENj 

= f0(l)IxN,- 

Let 4(k) be partitioned into the following hierarchical two-by-two block form: 

; /(k) A(k) 1k) IN 1/111 12 Nk\Nk. 

A21) A( 1)J k-l 

Then the corresponding multilevel preconditioner M(k) is defined as follows: 

A(k) -JTM(k)y 

since 

(2.3) A(k) -jTA(k)y 

Here, Jk is the transformation matrix from the kth-level hierarchical basis 
of Vk to the standard nodal basis of Vk* We have the following hierarchical 
two-by-two block form of Jk: 

(2.4) Jk = I 2 )}Nk\Nkl (J12 = J12)- 

This block form of Jk and the relation (2.3) between A(k) and A(k) imply the 
following identities. 

Proposition 2. There hold 

J12 = J12.Jk-1, 

A12 - (A12 + Al I J12)7Jk- = Al J12 + A12 -Jk-l- 

Proof. The second identity is obtained by straightforward computation, using 
(2.3), (2.4), and the first identity. The first equality is obtained from the rela- 
tions between the two-level hierarchical basis coefficient vector v, the kth-level 
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hierarchical basis coefficient vector v, and the ordinary basis coefficient vector 
v of a given function v E Vk . By definition, we have 

V = JV = JkV, 

that is, 

I J (VI- J12V2 }Nk\Nk-i 

--1 (vI - J12(Jk-) 1'V2\ }Nk\Nk-i 
V-Jk V - (Jk-l) V2 J }Nk-1 

Now note that vI = Vl = (ri)XiENk\Nk, , where the Oi are the coefficients in the 
following expansion of v E Vk: 

V(X) = Z ,i4k) + V2(X)- 

XIENk\Nk-l 

Here, V2 e Vk-I is such that v2(x) = v(x) for all x E Nk l . This implies 

V- J12V2 = V1 - Jl2(Jk-l) V2, 

that is, J12 = J12Jk-i 0 

We now derive the following explicit recursion between M(k) and M(k 1) 
We have 

( B(I) o (J12 +IB( )Al kk-l) 
=T '7'"' (+ _1 

I J12 r B~~kl) Ok 

7(12Bl + k - 1A21 M) k - 1) 0 - Jkk ) 
(.~ ~ +I (J12AB ) y[)JIk ii 12 k-i)) 

Now using the relations from Proposition 2, we obtain 

T+ A~ Jki - B(k)Ji2 + (A(2 + (A(k --- 

- (A) 2)+ A (MJ12)Jk - 7 I 

Hence, we can formulate the multilevel preconditioner M(k) constructed for 

B~~~~~k) 0~~~~~~k 

the kth-level hierarchical basis stiffness matrix A( in the following recursive 
form. 
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Definition 2 (Hybrid V-cycle multilevel preconditioners with approximate 
blocks for the hierarchical basis stiffness matrices). 

(1) M(l) =A('); 
(2) for k =2, ..., l, 

Al -~ 1 Ii 11l 12 M (k) )W(k-1 ) 0 I 

where 
)W(k-1) = M(k-1) k - I sko, 

[I _ p (M(k-l) -';(k-i )]A(k- I)- k-1 =sko, 

s= 1, 2, ..., l/ko- 1. 

In the case of first-degree polynomials pv(t) = 1 - t, we obtain V-cycle 
hierarchical basis multilevel preconditioners. They admit the following explicit 
form: 

B ((k) -kl) o k) I 12k) 

BB(kl) (IA 

I i : B ,1 I B I 
121 10 

(B + Lk)(I + B(k) Uk) - (B(k) + Lk)B(k)-' (B(k) + Uk) 

where 
B(k) - block diag(B1), l ..., B(, A(1)). 

The matrices Lk and Uk are the strictly lower and strictly upper block trian- 

gular parts of A4(k), respectively. The k-by- k block structure of A(k) in this 
case is with respect to the following hierarchical block-partitioning of the node 
set Nk: 

Nk = (Nk\Nk-l) U (Nk-l\Nk-2) U U (N2\N1) U N1. 

In Bank, Dupont, and Yserentant [6] the following hierarchical basis multi- 
grid matrices have been studied: 

(Bkk) + Lk)B)k) (B~k) + Uk) 

for certain block-diagonal matrices B(k) and B2k) with implementation block 
entries on the main diagonal. It is clear now that in the case 

B(k) - Bk)=b(k - bo d(AM 2 .. , A, A()), 

the preconditioner (1.1) proposed in Vassilevski [15] and the hierarchical ba- 
sis multigrid method from [6] coincide up to a change of basis. For approxi- 
mate blocks, the difference is minor. We only mention that in Bank, Dupont, 
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and Yserentant [6] certain efficient particular cases of approximations were in- 
vestigated, whereas in Vassilevski [15] the general case of symmetric positive 
definite approximations B(k) to A(k) (that satisfy the inequalities (2.2)) has 
been handled successfully. This was possible owing to the different technique 
used; namely, in [15] the theory for inexact blocks was based on the strength- 
ened Cauchy inequality (for the latter, cf. Bank and Dupont [5], Braess [7, 8], 
Axelsson and Gustafsson [2], etc.). 

3. PRELIMINARY ANALYSIS 

From now on, we shall use the kth-level hierarchical basis stiffness matrices, 
dropping the overbar for notational convenience. In practice, Definition 1, 
based on the ordinary nodal basis stiffness matrices, will be used. Alternatively, 
one can precondition the hierarchical basis stiffness matrices, used implicitly, 
based on the efficient implementation of the matrix-vector products proposed 
in this case by Yserentant [18] and Bank, Dupont, and Yserentant [6]. Note, 
however, that in the latter case the number of arithmetic operations of one 
preconditioning step is larger than in the case of the direct use of the multilevel 
preconditioners of the form specified in Definition 1. 

We formulate now some basic auxiliary facts. The first result shows the 
growth of the energy norm of a function v E Vk+I4 restricted to the coarser 
space Vk by nodal interpolation. That is, let v2 E Vk be such that v2(xi) = 
v (xi) for all xi E Nk; then, in general, the following inequality is valid: 

a(v2, V2) < ij(ko)a(v, v). 

The function q = q(.) is independent of k and v and, in general, is an in- 
creasing function of ko . The growth of i7(-) depends on the ratio hk+1- /lhk+s, 
s = 1, 2, ... , and on the dimension of the domain. Here, hj is the discretiza- 
tion parameter at level j. For Q a two-dimensional polygon, cf. Yserentant 
[18]. A detailed proof in the case where Q is a 3-D polytope is given in the 
Appendix. We state this result in a matrix-vector form in the next lemma. 

Let nk be the number of nodes at level k. 

Lemma 1. Let 

V = (I) }Ak+ko\Nk E Rnk+ko, V2 E Rnk. 

Then 

(3.1) V2TA(k)V2 < j(kO)VTA(k+o)V. 

The function q = q(ko), ko > 0, is an increasing function of ko independent of 
k. More precisely, the following asymptotic behavior holds: 

{ cko for Q a 2-D domain, 
r1(ko) = lVC/u4 for Q a 3-D domain. 

The constant , > 2 is an upper bound of the ratio of the mesh sizes hk and 
hk+1 of two consecutive grids, that is, u > max <k<l- I hk/lhk+1 . The constant c 
is independent of possible jumps of the coefficients of the bilinear form a(-, *) as 
long as they are discontinuous only across edges (faces in 3- D) of elements from 
the initial triangulation T1. 
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Remark 1. Note that for ko = 1 we have t(1) = 1/(l - y2) where y is the 
constant in the so-called strengthened Cauchy-Bunyakowskii-Schwarz inequality 
(see, e.g., Bank and Dupont [5] and Axelsson and Gustafsson [2]). See also 
Lemma 2 below. 

We now prove certain relations between the blocks A(k), A(k), A(k), and 1 1 12 9 -21 
A(k-1). 

Lemma 2 (A strengthened Cauchy-Bunyakowskii-Schwarz inequality). There 
holds 

vTA(k)V2 < y(VTA(k)VI)1/2(vTA(k )V2)1/2 

for all VI E Rnk nk-1 and V2 E Rnk-, where y = VF1 - 1/6(l) < 1, uniformly 
in k=2,...,1. 
Proof. We have, by (3.1), 

vTA(k 1)V2 < (I )A(k) (I) 

= v[TA()V + 2v TA(k)V2 + vfTA(k 1)V2. 

That is, 

vTAf k)VI + (1T- 1)) V2'A(k l)V2 + 2V[ A (k)V2 > 0. 

Replacing now v1 by tv1, t e RIl , we obtain 

t2vTA lvI + 2tv A(2v2 + I- 2)) v IA(k )v2 > 0 Vt e 

That is, the above quadratic form (in t) is positive semidefinite. Hence the 
discriminant 

D - (vkA(I2)v2)2 - (1 - l) ) v kTA)v TvA(k-)v2 

must be nonpositive, which is the desired result. 0 

Lemma 3. There holds 

V TA (k)VI < q(l)VTA(k)V, ally = (vl) E Rn V2 Rnkl. . 

Proof. We have, by Lemma 2, 

VTA(k)V = VTAk)vi + 2vTA(k2)v2 + vfTA(k- )V2 

? vTA(kl)v - (kA)vl)l/2(vTA(k-)v2)l/2 + vfA(k-)v2 

2 
1 A (k)V + 1 (vT A'k)Vl)1/2 _ (VTA(k- 1) 1/2 

I 1V ttH [ i-(1) I-I I 2 V2)J 

> 1 TA (k)V . a 

Finally, we prove the basic result for the growth of the relative condition 
number of the pure V-cycle multilevel preconditioners with respect to the cor- 
responding stiffness matrices. 

We recall that ko > 1 is a fixed integer parameter. 



HYBRID V-CYCLE ALGEBRAIC MULTILEVEL PRECONDITIONERS 499 

Lemma 4. Let M(k) for some fixed integer k > 1 be a symmetric positive definite 
approximation to A(k) such that 

(3.2) A[A(k) IM(k)] l [ +3k] 

for some 3k > 0. Define 
M(k) = - (k) 

andfor s=k+ 1, ..., k+ko set 

B(S) ( I B s ' s 
M (S) 0" 11 i 

A(s) M(s- I ) ,/ 21 (-) 

Then 

A[A(k+ko)'M(k+k1)] E [1, 1 + 5k?1(ko) + (1 + bq(l)) 1(s) 

Proof. We have 

VT(M(s)-A(W))v = vT(B(sl) - At))vl + vT(M(s-1) -A(s-))V2 

where 

V= (1) R v V2 E R 
V2 

Since 

vT(B(s) - A(s))vl > 0 by (2.2), 

vTA~s)B(sl) A(s)v2 > 0 

(B(sl) is symmetric positive definite and A(s) is symmetric), and 

v2T(M(s-1) - A(s-1))v2 > 0, 

we see by induction (note that A[A(k)' j(k)) > 1) that 

A(A(s) 'M(s)) > 1. 

Using (3.3) recursively, we get with 

V(k+ko) - v (s+)) INs\N 

and v(s) = vS+), S = ko + k - 1,.. ,k, that 

vT(M(+kko) - A(k+ko))v < v~k+1)T ()(k) - A(k))v(k+l) 

k+kD-1 k+kO-1 
+ b E v(s+1) A(s+1)v(s+1) + j v(S+) A(svs+) 

s=k s=k 

< +k (ko (1 + bti(l)),r/(s) vTA(k+ko)v, 
{3k11(ko)~ ~ S= 
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by (3.2), (2.2), (3.1), and Lemma 3. That is, 

[A(k+ko)lM(k+ko)] E [1, 1 + k( + (1 + bj(1)) (7 

Remark 2. Note that 

1 + (1 + WI )) A (S) < O(k'o), Q a plane polygon, 

s=1 1Cjtko,5 Q a 3-D polytope. 

We recall that iu > maxl<k<1-1 hk/hk+l. Applying now Lemma 4 for k = 1 and 

M(1) = A(1) (hence bd = 0), we obtain the result from Vassilevski [15] which 
is, as already noted, a more algebraic version of the hierarchical basis multi- 
grid method from Bank, Dupont, and Yserentant [6]. Namely, for Q a plane 
polygon, the relative condition number of the pure V-cycle multilevel precondi- 
tioner with respect to the corresponding stiffness matrix increases quadratically 
with the number of discretization levels used. For 3-D domains the result is 
worse; we have an exponential growth of the same condition number. 

4. THE RELATIVE CONDITION NUMBER OF M(k) WITH RESPECT TO A(k) 

Let ko > 1 be a fixed integer parameter. 
We consider the following particular polynomial pv = pv (t) used in Defini- 

tion 2: 
PV _ 1 + Tv((1 + a-2t)/(1 -a)) Pl,( 1 + TV,(( + a)/0 - a)) 

with v > j(ko+). Here, Tv is the Chebyshev polynomial of the first kind 
of degree v. The parameter a E (O, 1) is assumed to satisfy the following 
inequality: 

(1 _ )V 

iZ5= ( 1 + )/ )v1 - )s- 1 ]2 

(4.1) < [a I - (1+ (1 +W1I()) A(s) -1(ko) 

Such a (sufficiently small) a exists under the above choice of v . This is readily 
seen, since for a -O+ (after multiplying (4.1) by a) we have l/v2 < 1/1(ko) . 

Consider now some s , I < s < I/ko - 1 , and let Js > 0 be such that 

A[A (sko) -M(sko) ] E [ 1, 1 + as ]. 

Next we estimate the spectrum of (A((s+1)k0))-1M((s+1)k0) . For 

k(sko)- [I -P., (M(sko) -'A A(sk) )]A (sko) X' 

with 

(4.2) a < 1/( + J), 

which we assume by induction, and v > VI(k0) we have that 

A [A (sk?) M(kO) ] E [ 1, 1 + Ssko ]. 
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Here, 

Jsko~~ =Sp p (t) ' 1 +6S5 
] 

<sup {PV(t) t E [a, 1]} 

where we have used [a, I ] D [ 1/(1 + 5s), 1 ]. Since 

SUP TV (1+a-2t) =1 
tE[a,1 1-a 

we obtain 

S~p~l,(), E [. 1} =1 + Tv((l + a)/(I-ca)) 

2 __ - V/ 
I + (1 + q2v)12q V 1 +W 

Hence, 

- 2 4qv 
Sk T((l + a)/(l -a )) 1 (qV - 1)2 

(4.3) (1-a)v 

a [Ev (1 + Va)v-j(l - V/)j-l] 

Lemma 4 now implies 

ko 

5s+I < Sskoij(ko) + (1 + bii(1)) Z 'i(j) 
j=1 

<- 1 by (4.3) and (4.1). 
a 

This establishes the induction assumption (4.2) for s := s + 1. 
We can thus formulate the first main result. 

Theorem 1. Let v > VI(ko) and let a E (O, 1] satisfy the inequality (4.1). 
Then the ko-step polynomially accelerated multilevel preconditioning matrices 
M(sko) from Definition 1 (or Definition 2) with approximate blocks B(k) sat- 
isfying (2.2), are spectrally equivalent to the corresponding matrices A(sko), 
s = 1, 2, .. ., l/ko - 1. The following estimate is valid: 

A[A(sk0)-lM(sk0)] E [1 51 . 

Remark 3. This theorem, in view of Remark 1 when k I = 1, gives exactly 
the result from Axelsson and Vassilevski [4]. In the case of exact pivots, this 
theorem is the main result of Axelsson and Vassilevski [3]. 

5. COMPUTATIONAL COMPLEXITY 

In order to make the essential parts of the presented multilevel precondition- 
ing matrices clearer, we next consider mainly the case of matrices defined by 
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(1.1), that is, with exact pivot blocks AI I. In view of Theorem 1, this makes 
no significant difference for the results discussed further on. 

Theorem 1 shows that under the assumption v > the hybrid V- 
cycle algebraic multilevel preconditioning matrices defined by (1.1) are spec- 
trally equivalent to the corresponding stiffness matrices. However, in order to 
have an optimal-order preconditioner, the amount of arithmetic work in each 
iteration step must be proportional to the number of unknowns. 

We consider now the asymptotic work estimate in the case of the model 
selfadjoint elliptic bilinear form 

a(u, q5) = jEki,(x) au 7 dx 

with Q a plane polygon or a 3-D polytope. For simplicity we consider uniform 
refinement. Then the number of nodes nk at the kth discretization level grows 
in a geometrical fashion, that is, 

nk = nilid(k-1) k = 1, 2 
with d = 2 or d = 3, respectively. We recall that u > maxl<k<1-1 hklhk+l > 2 
(hk is the discretization parameter at level k). 

Let 7f(s) be the amount of arithmetic work performed on level sic. Then 
we have, using the fact from Bank and Dupont [5] (see also Axelsson and 
Gustafsson [2]) that cond(A(k)) = 0(1), that 

s-1 

7f(s + 1) = vf (s) + Cn(s+l)ko = C , vfn(s5a+l)kO + v W/(1) 
aT=O 

s-1 

= C , V / d(sa+i1)ko- 1n1 + vsI(I1) 

aT=O 

= Cnlu id(s+i)o Z + v5(1) 

< n(s+()k1) (V ) ) 

Then, if V/ I'dko < 1, we get 

W(s+1) <C (1) 
n(s+i)k0 nk0 

That is, the asymptotic work estimate shows that the hybrid V-cycle multilevel 
preconditioners would be of optimal order if v satisfies the inequalities 

v > q(k0) (from Theorem 1) 

and 

Idkp < 1 (from the complexity requirement). 

Based on the asymptotic behavior of q(ko) (see Lemma 1), the restrictions 
on v read as follows: 

Idko > V > 1 {k0)=) , d=2 for Q a plane polygon, 
JU ~ [q (ko~) 

Q(/Uko/2) , d = 3 for Q a 3-D polytope. 
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It is clear now that asymptotically, for ko sufficiently large, both inequalities 
for v can be satisfied for both 2-D and 3-D problem domains. Hence, we have 
the following result. 

Theorem 2. The multilevel preconditioners M(k) from Definition 1 (or 2) give 
optimal-order methods for ko sufficiently large. This means that they are spec- 
trally equivalent to the corresponding stiffness matrices A(k), and the cost of 
evaluating the preconditioner is O(nk), that is, proportional to the number of 
unknowns. 

Remark 4. We have used here the most efficient choice of the polynomials p>, 
namely those based on the properly scaled and shifted Chebyshev polynomials. 
However, other choices are also possible. For example, we may use 

pv (t) = (I1 - ty. 
This polynomial also gives (asymptotically, for k0 sufficiently large) optimal- 
order preconditioners. The inequalities for v in this case, however, are more 
restrictive (the proof proceeds in the same way as in Theorem 1). We have 

dko > > ?I (k-) { 0(ko), d = 2 for Q a plane polygon, 
> V 

>l O(,uko), d = 3 for Q a 3-D polytope. 

It is clear that these inequalities can also be achieved for ko sufficiently large. 

6. ADAPTIVE IMPLEMENTATION 

For the practical implementation of the present algebraic multilevel precon- 
ditioners one needs estimates for ?(1),..., j(ko) in (3.1), and in the version 
with approximate blocks BH the constant b in (2.2). They are required in 
the construction of the polynomials Pv = pv(t). In the case of moderate k0, 
this can be done inexpensively by a local analysis technique. For more details 
we refer to Maitre and Musy [ 13]. Alternatively, one can use the parameter-free 
polynomials from Remark 4. In the present section we give an adaptive proce- 
dure for the construction of the most efficient choice of polynomials Pv = Pv (t), 
namely those based on the properly scaled and shifted Chebyshev polynomials. 

Note that the polynomials pv (that is, as and a) can vary from a group 
of ko steps to the next in the recursion (1.1). Hence, the following adaptive 
version of the presented multilevel preconditioners is of practical interest. Since 
the eigenvalues of (A(sko)) -lM(sko) are contained in an interval [1, A.j, one can 
estimate A, starting with s = I and setting 

a I s(t) = 1+ Tv((l + as - 2t)/(l -as)) 
o 

_As PV ( I- + Tv((l + as)l(l - as)) 

the procedure continues with s = 2, 3, ... , 1/ko - 1 . 
The degree of the polynomials v is chosen a priori and is fixed throughout 

this process of estimating the eigenvalues )s. If an unacceptable growth of 
the eigenvalues As takes place, the procedure can be restarted with a larger v. 
Theorem 1 guarantees that a reasonable stabilization of the order of magnitude 
of the eigenvalues )s can be achieved. 

The other parameter k > 1 should be chosen in order to balance the arith- 
metic work for the estimation of the eigenvalues As and the work of polyno- 
mial acceleration at every global step, in other words, to ensure the inequality 
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v < A dk . In practice, we choose a moderate value of ko with respect to 1, say, 
ko = 2 or 3 for I = 6, 7. Note that the action of the matrices A(k) on given 
vectors is relatively inexpensive. 

The estimation of the eigenvalues A, can be carried out, for example, by the 
following variant of the Lanczos method (see, e.g., Concus, Golub, and O'Leary 
[10]). 

We omit the superscripts for the time being. 
Let K = M-1A, and consider the Lanczos method for generating A-orthog- 

onal vectors, which is given by a recursion of the form 

d(?) =$ 0 (an arbitrary vector), 

and for k= , ,..., n- 1 

(6.1) Kd(k) - bk-ld(k-1) + akd(k) + d(k+l) (b- = 0). 

Here, n is the size of the matrix A. 
Consider the matrix 

Q =(d(?), d(1), ..d(n^)) 

and let 
ao bo 
1 a, bi 

H=i 1an 

be the tridiagonal matrix of the coefficients in the recursion (6. 1). Then we have 

ao bo 

K(d(?), d(l), , d(n-)) = (d(C), d(l), Id(n)) a, i) 

1an-l1 

that is, KQ = QH. Hence, since Q consists of linearly independent columns 
{d(s)}In-I , we have K = QHQ-. That is, H has the same eigenvalues as K. 

It is well known (see, e.g., Parlett [ 14]) that accurate estimates for the extreme 
eigenvalues of K can be obtained from the truncated matrix 

ao bo 
1 a, b, 

* *.bk-2 
K 1 ak-l 

for k considerably less than n. This is clearly seen when the first two eigen- 
values of K are well separated. We state the following corollary of Theorem 
12.4.1 from Parlett [14, p. 243] (see also ?12.6 in [14]). 

Corollary 1 (Saad's estimate). Let a1 < a2 < ... < an be the eigenvalues of K, 
and let z1 be an eigenvector corresponding to ai . Also, let 01 be the smallest 
eigenvalue of Hk for some k > 1. Then the following estimate holds: 

0 <601 - a1 (an - a1) (cosZ(d(O), zi) Tk((K + a2/1 - 2)/(K - 1))) 
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where K = an/al and Tk is the Chebyshev polynomial of degree, k. d(?) 
is the starting vector in the recursion (6.1) of the Lanczos method. (Here, 
cos Z(d(0) , z1) = d(O)Tzi /(Ild(O) 11 jjz 11) .) 

It is clear now that in the case when K is well conditioned, that is, when 
M is spectrally equivalent to A, as it will be in our application, k, the size of 
the truncated matrix Hk, can be chosen independent of the size of the original 
matrix A. For example, if we would like to compute 61 within an accuracy e 
such that 

0 < 01 - a1 < ai, 

it is sufficient to choose k such that 

(c-l~~~t 1 >2 
(K-i) cos Z (d(o), zi) Tk ((-+ a2/a -2)/(K - 1)) <J - 

which gives in this case a bound for k independent of n, the dimension of A 
(in the case when a2/a1 is bounded away from 1). 

The computation of the minimal eigenvalue 01 of Hk (in our case we need 
only to estimate the minimal eigenvalue of K) can be done efficiently by any 
of the well-known methods for tridiagonal matrices, e.g., by bisection. 

To solve systems defined by M = M(l), one can use the following variant 
of the algorithm AMLI (Algebraic Multilevel Iteration) from Axelsson and Vas- 
silevski [4]. 

Let p(s) (t), s - 1, 2, ..., 1, be given polynomials, p(s) (0) = 1, and set 

Q(S) - t q(S) + qs)t +. .. + q(S)tVi, v = vv. 
t 

For a given vector d = d(l), the AMLI gives 

Cm = QUl) I(MY) -A (0)MY) d4) = [I -pv(MY) A(0) ]A(1) d41). 

In particular, 
M(0) 1) = c(l) if p(l) = 1 -t, vz = 1. 

Algorithm AMLI (Algebraic Multi-Level Iteration). Given a set of polynomials 

Q(S = (S)+ (S)t + .......... +(S) tv-1 ..... VJ=Ssl ........ 2. 

Then the AMLI gives for any vector d = d(l), 

c=[I - p(l) (M() _AY = 1-tQAfI1P(t) 

in the following steps. 
(0) initiate 

for k = I to 1 set a(k) = 0; 
k = I ; 

(1) a(k) := a(k) + I 
if a(k)= 1 then 

V(k) =0, W = (k ) ld(k); 
else 

W = q(k) )d(k) + A(k)v(k); 

(2) V(k) = A(k)w1 1 11 W 
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(3) d(k-1) = W2 -Ajk) V(k); 
(4) k:=k-1 

if k > 1 go to (1); 
(5) solve on the initial level 

v(1) = Q I (1)A(1)Id(); 
(6) set 

V(k+1) _ V(k) 

2~~~~~~~~~ (7) l) := v(kl )-(kl+l)l t(k+I)V(k+l) 

(8) k:=k+1 
if a(k)<v vk goto (1); 

(9) a(k) = 0; 
if k <1 go to (6); 

(10) 
cYl) = vl); 

End (ofAMLI). 

We note that Algorithm AMLI implements evaluation of polynomials based 
on Homer's scheme. It is well known that for methods based on Chebyshev- 
type polynomials, this may lead to instabilities. This does not happen in the 
AMLI method as long as v = vk, the degrees of the polynomials, as is the case 
in practice, are not too large. Another possible way to implement the algorithm 
is to use the matrix polynomials in a factored form based on the roots of the 
polynomials Pv = Pv (t), which will give, in general, a more stable computation. 

The behavior of this adaptive procedure in the case of model test examples 
is given in the next section. 

7. NUMERICAL EXPERIMENTS 

We tested the following sequences of stiffness matrices {A(k) }=l correspond- 
ing to the following model problems: 

(7.1) a(u, q) = jk(x, y)Vu * Vq dxdy, 

where Q was the unit square, and the finite element spaces consist of piecewise 
linear functions on isosceles triangulations 1k with meshsizes hk = 2-k, k - 

1, 2 , ... ,l . 
The corresponding boundary conditions were of Neumann type on the bound- 

aries x = 1 and y = 1. On the boundaries x = 0 and y = 0, Dirichlet 
boundary conditions were imposed. 

The model problems corresponded to the following coefficient of the bilinear 
form (7.1): 

Problem 1 (a smooth coefficient): 

k(x, y) = 1 +x2 +y2; 

Problem 2 (a discontinuous coefficient): 

I ) * x < anory < > 
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Problem 3 (a degenerated bilinear form): 

k(x, y) = xy. 

We estimated the eigenvalues 1/'s = Amin[M(s)' A(s)] for s = 2, 3..., / = 

7, and various sets of degrees {v1 = 1, v2, .. ., v1-I, v1 = 1} of the optimally 
constructed normalized and shifted Chebyshev polynomials 

p( )(t) = 1+ TV((1 + as - 2t)/(1 - as)) I , 

The matrices M(k) were defined as follows: 

MM1 = A(1) 

and for k = 2, . 

A (k) M(k1-) ) (0 AlA1) 

where 
jW(k-1)-I = [I _ p(k-1)(M(k-1)YA(k-1)]A(k-1)-1 

(vI= 1p M 
(t) -t). 

The eigenvalues As were computed by the Lanczos method as described in 
?6. Within the Lanczos algorithm the action of the matrices M(s)' on certain 
vectors was computed by Algorithm AMLI from ?6. We note that As can be used 
as an estimate for the condition number of M(s) A(s), since Amax(M(s) A(s)) < 
1 by Theorem 1. 

We refer to the set of polynomials by the set of degrees 

IPI = 2 lV- - 1 ,v~ l P1} 

which are denoted by 
(1) for (1, 1,1, 1,1, 1), 
(2) for (1, 1, 1, 2, 1, 1, 1), 
(3) for (1, 1, 1,3, 1, 1, 1), 
(4) for (1, 1,2, 1, 1,2, 1), 
(5) for (1, 1,3, 1, 1,3, 1), 
(6)for (1,2, 1,2, 1,2, 1), 
(7) for (1, 3, 1, 3, 1, 3, 1), 
(8) for (1, 2, 2, 2, 2, 2, 1), and 
(9) for (1, 3, 3, 3, 3, 3, 1). 
We measured the CPU time for the computation of the eigenvalue Ak at 

every level k. This also can be considered as a measure of solving a system 
defined by the matrix A(k) using M(k) as a preconditioner, since the Lanczos 
method is very similar to the preconditioned conjugate gradient method with 
three-term recurrence (cf. Chandra [9]). 

Let us focus on the results for Problem 1. We obtained that the set of poly- 
nomials (5) and (7) give the same condition number equal to 1.99, but (5) is 
about 15% less expensive in operation count. The situation was similar for 
the sets (4) and (6), with (6) somewhat less expensive (about 3%) than (4). 
Polynomials (5) gave about the same condition number as the extreme case (9), 
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and the last is the most expensive one (about 2.2 times more expensive in CPU 
time than (5)). We also observed that (3) at level k = 6 gave a better condition 
number than (4) and (6) (2.95 versus 4.84 and 4.02, respectively) and at level 
k = 7 about the same condition number as (4) (3.91 versus 3.55). However, 
for reasonably large meshes (1 < 7) the most competitive method (in terms of 
CPU time) turned out to be that based on the pure V-cycle preconditioner. In 
our test only the method based on the polynomials (3) at level 7 become faster 
than (but very close to) the V-cycle method (polynomials (1)). The perfor- 
mance would be different for very fine meshes and especially for 3-D problems, 
for which the V-cycle method gives condition numbers that grow exponentially 
(see Remark 2). 

The test showed also that the method is very robust. It performs practically 
independently of the jumps of the diffusion coefficient k(x, y) of the bilinear 
form (7.1) as well as for degenerated bilinear forms, Problem 3. Actually, by 
a local analysis technique, as shown in Maitre and Musy [13] (see also the Ap- 
pendix of the present paper), these computational facts can be explained, that 
is, one can show that the constants q(1), q(2), ... , (ko) in (3.1) are inde- 
pendent of the jumps of the coefficient k(x, y) as long as k is discontinuous 
only across edges (faces in 3-D) of elements from the initial triangulation. 

8. APPENDIX 

We give now a proof of Lemma 1 for Q a 3-D polytope. The two-dimensional 
case was considered in Yserentant [ 1 8]. The constants C, CT below may change 
in different occurrences, but they are always independent of the size of the cor- 
responding domain. We consider finite element spaces Vk, 1 < k < 1, of 
piecewise linear functions. 

The proof will proceed in three steps. First we derive an estimate of the form 
below for every element T E Tk and every continuous function v from H1 (T) 
and every Vo E Vk+ko such that vOINk = 0, 

IVloo,T < hj 12CT(IV + VOI2T + h-2IV + vol2 T)/2. 

Here, we denote by IooT, I | Io, T. and I H I 1, T the Loo(T) norm, the L2(T) 
norm, and the H1(T) seminorm, respectively. Next, the following local esti- 
mate is derived, 

(8.1) IV 12T < CUko IV + VO12T 

for all v E Vk, Vo E Vk+k0 such that voINk = 0, where the constant CT depends 
only on the shape of T but not on its size. Recall that u > maxl<s<11, hs/hs+l- 
Finally, the required global estimate is derived, 

a(v, v) < q(ko)a(v + vo, v + vo) 

for all v E Vk and Vo E Vk+ko such that voINk = 0, where 

q (ko) =cu . 

The constant c depends only on the shape of the elements from the initial 
triangulation; a is the so-called local ellipticity constant defined as follows: 

a = max 82(T) 
TETI /jti(T) 
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where 4u I(T) and Iu2(T) are the bounds of the local quadratic forms, 
3 

(8.2) ,si(T)IgI2 < ?L ki, j(x) Xj < ?i2(T) gI2 for all 4 E RW3 ,x E T. 
i,j=l 

Proof of Lemma 1. Let T E Tk for some k > 1. Since T is an element of a 
triangulation, it has a certain simple shape, for example, T can be considered 
as a convex domain. Hence, there exists an extension mapping that transforms 
any continuous function v from H1 (T) to a function vi from Ho (Q), where 
Q is a larger domain (say with two times larger diameter than T) such that it 
preserves the norm (cf., Grisvard [1 1, p. 25] and the references given there), 
i.e., we have, 

VIT = V, I11VII < CT(IVI1,T + h, 2Iv, T)1/2 

The constant CT depends only on the shape of T but not on its size. All the 
estimates below of the above type are first derived for domains with unit size, 
and then the corresponding result is obtained by transformation of the domains. 

Consider now a node xo E T n Nk, and let G(x, xo) be the fundamental 
solution of the Laplace equation, that is,. 

-AG(x, xo) = 0 for all x ER3\{Xo}, 

where 
G(xxo)=l/r, r=Ix-xol. 

Choose an e > 0 such that Ke(Xo) _ fix - xo/ < e} c Q. Then, using the 
Green's formula, we obtain 

o=- AGVdx VG. Vvdx-j V5dr. 
\Ke (XOo) ( Kg (xo) Or 

Applying now the Schwarz inequality, noting that a G/ r =1 /e2 on 9Ke (xo), 
we obtain 

e |ix- Ol |1- < 221/ (K(VGI dxIVI d) 1 

< TII2 T+ hk 21I21 T1/2 (| VG12 dx) 

Finally, since IVGI < 1 /r2 and using spherical coordinates in the above volume 
integral, we obtain 

g2 j id Fd <-CT(IV 1T+hk IVIO,T) (1 r2/r4 dr) 

which implies the inequality 

(8.3) 1 | v dF < e.-T/2CTOV12 + h-2IvI2 ) 1/2 

We shall apply this estimate for functions v +vo, where v E Vk and vo E Vk+k0 
is such that voINk = 0. In particular, vo(xo) = 0. We now use for e hk+4 
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Taylor's formula (noting that in such a neighborhood of xO the extension v +'vo 
can be chosen linear, since (v + vo) I TnK,(x0) is linear), 

v(xO) = v(x) + vo(x) + (xO - x) * V(v-vo)(x). 

Hence, 

Iv(xo)I < C (-2 L (v +vo)dF +d1/2Ivivoi). 

Since v is linear on T, IvI achieves its maximum at a vertex node, say at 
X0 e T. Then, by (8.3) and the above estimate, using the property of the 
extension mapping, we obtain 

xET ()l = Iv(xo)? (< j (v-4 dFlii) 

< (E-1/2 + C1/2)CT(IV + V12+ h2 V + V012, T)2 

? hfc2 + V2 h-2 IV + V|O1 T)12 

It remains now to note that (since v E Vk and T E Tk)O 

V= E v(Xi)q 

Xl ENknT 

and 
Vv = E V(Xi)Vq5 k), 

XENknT 

where the number of entries in the above sums is bounded independently of k. 
Then 

IVI1 T < chk' maxlv(x)I 
kXET 

(8.4) < CT(hk/hk+k0)1/2(IV + Vol2f T + h -21V + VOI T)1/2 

? CT/O/2(IV + V012 ,T + h -21V + VOO, T)/. 

In order to eliminate the L2-term in the above estimate, we use the Poincar6 
inequality, 

hk ( 0, T-hk 3 AW I1, T 

for w = v + vo - const . By an appropriate choice of the constant we can achieve 
fT w = 0. Hence, applying the above estimate in (8.4) for v := v - const, we 
obtain 

1V11,T < CT/1'o/ IV +VOI1,T, 

that is, the local estimate (8.1). 
The global estimate now follows by a standard argument. We have, using 

(8.2) and the local estimate (8.1), denoting 

aT(U ITS kaj(X)0 Ox1' 
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that 

a(v, v)= aT(v, v) < Z I2(T)lv I T 
TE Tk TETk 

TE'rk 

< Zc2(/2(T), k oa v o o 
TETk 

TE'rT TE1/I +)(T)) 
? { max c2 max (T} U a(+ o +o 

Here we used the fact that the constants CT depend only on the shape of T but 
not on their size. Hence, they are uniquely determined by the elements from 
the initial triangulation z1, since we use shape-preserving refinement. 0 

We remark that the above proof clearly indicates that the function n(ko) 
remains bounded with respect to possible jumps of the coefficients of the bilinear 
form a(., .), as long as they occur across faces of elements from the initial 
triangulation. 
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